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I. Phys.: Condens. Mattex 7 (1995) 62914295. F'rinted in the UK 

Resistance and reflection phase distributions in short 
one-dimensional conductors 

J Heinrichs 
InStitut de Physique, B5, Universit6 de L i e s .  Son Tilman, B-4000 Liege, Belgium 

Received I9 J a n u q  1995 

Abstract. Resistance and reflection phase distributions are obtained from the exact asymptotic 
solution of the invariant embedding equations for arbitmy disorder, for samples of length L <$ 
(zko)-' < L, (with h, the incident electron wavenumber 3nd L, the localivtion length). The 
resistance moments differ quantitatively from earlier results forthe range (2h)- '  << L << L, and 
from results obtaned by assuming uniformly distributed phases. The phase distribution reduces, 
for weak disorder, to a binary form with possible phzses r/2 and 3n/2. The conductance 
moments diverge more strongly thm the results based on uniformly random phases in ID. 

The h d a u e r  [ I ]  transport formula defines the dimensionless resistance of a random one- 
dimensional (1D) conductor of length L in terms of the reflection amplitude R(L) and 
transmission amplitude T ( L ) ,  for an incident plane wave: 

The invariant embedding method [2,3] addresses directly these emerging quantities and 
describes R(L) and T ( L )  by a closed set of non-linear differential equations. In particular 
the complex reflection amplitude R = R(L) = IR(L)I exp(iO(1)) is given by (in units with 
h = m = l )  

(2 )  
dR 
dL 

iko- = V(L)(l + R)' - 2kiR 

where V ( L )  is the random potential which we assume to have the Gaussian &-correlated 
form 

( V ( L ) V ( L ' ) )  = V,2S(L - L') ( V ( L ) )  = o  (3) 

and !Q is the wavenumber of a plane wave incident at the edge x = L of the conductor. 
The invariant embedding approach has provided detailed confirmation 13-51 of the non- 
self-averaging nature of the resistance 161 both for long lengths L >> L ,  (with L, = !&V: 
the localization length) and for short lengths L << L,. For short sample lengths the mean 
resistance obeys Ohm's law ( p )  = L/L,, which implies diffusive motion [l] (quasi-metallic 
regime). Similar results have also been obtained with other quite different methods [7, XI. 

A puzzling feature of the treatments using the Landauer formula (1) [3-5,8] is that 
they all lead to divergent moments for the conductance g = l / p  on a short length scale L 
which, in fact, supports the original suggestion of Landauer [l]. The divergent conductance 
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moments have been attributed to Azbel [9] transmission resonances associated with zero- 
resistance realizations of the random potential. Surprising as they are, these results are not 
in conflict, however, with universal conductance fluctuations in metallic systems [lo] which 
have been demonstrated for multi-channel systems such as two- and thee-dimensional 
metals and so-called quasi-one-dimensional many-channel systems. We recall that the 
multichannel treatments use a simple generalization of the one-channel formula (1) [IO, 111 
which leads to finite conductances but which is invalid in the high-transmission limit in ID. 

The studies of resistance (conductance) fluctuations by means of the invariant embedding 
approach [3-51 (or by other methods [&SI) usually rely on the so-called random-phase 
model (RF’M); one assumes that the phase of the reflection amplitude (e B(L) defined 
modulo 2 n )  is an independent random variable which is uniformly distributed between 
0 and 2 n .  In order to put the above results for ID systems on a firmer basis, it is, of 
course, desirable to check the validity of the RPM as thoroughly as possible. This seems 
particularly important for samples of length shorter than the localization length (L < L,) 
for which the conductance moments diverge, as recalled above. Some time ago we studied 
the exact invariant embedding distribution of the phase in the low-reflection (quasi-metallic) 
regime (L < Lc) for 2k0L 2 I [12]. We also calculated the low-order resistance moments 
using an exact statistical treatment of the actual solution (i.e. the solution obtained without 
further assumptions about phases) of the stochastic equation (2) for low reflection. In 
particular, while for 2 b L  2 1 the phase distribution is quite structured [U], for larger 
values ((2ko)-I << L << L,) it becomes increasingly uniform and the resistance moments 
agree to within terms of order Il(2koL)’ with the RPM moments. 

Obviously, the analysis of the properties of the phase and of the resistance in the domain 
L << (2ko)-’ is also of interest, particularly in cases where L, is close to its lower limit 
(2k0)- ’  (which is known as the Ioffe-Regel limit). The purpose of this paper is precisely to 
discuss analytical results for the resistance moments and for the phase distribution obtained 
from equation (2) for L << (Zko)-’, for arbitrary disorder. The resistance moments differ 
only quantitatively (by a factor of (2n - l)!!/n! for the nth moment) from the earlier 
results [U] for 2 b L  >> 1, while the phase distribution is qualitatively different (the phase 
distribution derived in [ 121 is clearly invalid for 2koL << I). 

Part of the motivation for presenting these results is provided by a recent paper of 
Pradhan and Kumar [I31 who argue unjustifiably, I believe, that statistical correlations 
between B(L) and the random potential in equation (2) largely suppress conductance 
fluctuations, making the mean conductance finite in ID. 

It is convenient to eliminate the kinetic energy term on the right-hand side of equation (2) 
by defining Q(L) = R(L)exp(-ZihL) which satisfies 

(4) 
d Q  
d L  

iko- = V(L)exp(-2ibL)(l + exp(2ikoL)Q)’. 

As mentioned above, we are interested in a domain of sample lengths 

L << (2kol-I 5 L, (5) 

where the asymptotically exact solution of (4) (with Q(L = 0) = 0) is 

with 

(7) 
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This leads to very simple expressions for the resistance (1) and for the phase of the reflection 
amplitude in terms of the random variable z ,  namely 

p = z 2  (8) 

0 = tan-' (') 
which define the probability distributions of p and 8 in terms of the distribution of z as 

m 
P , ( p ; L ) = S - m d z P , ( z ; L ) 6 ( p - z Z )  (10) 

The distribution of z is the inverse Fourier transform of the moment-generating function 

where, from (7) and (3), (z2"+') = 0, n = 0 , l .  2 . .  . ., and 

(ZZ") = ( p " )  = 1 x 3 x 5 x . . . x (2n - I)/" n = 1 . 2 , 3 , .  .. (13) 

where I = L/L,.  Equation (13) is readily obtained from the standard result for the average 
of a product of 2n Gaussian variables. From (12) and (13) it  then follows that P2(z; L )  is 
the Gaussian 

By inserting (14) in (IO) and (11) we obtain successively 

We recall that the above results are valid for any strength of disorder for short sample 
lengths L << ( 2 ! ~ ) - '  < L,. 

The resistance moments (13) are qualitatively simiIar to the low-order moments (n = 
1 , 2 , 3 )  found previously for weak disorder, for arbitrary values of 2koL [12]. In fact, the 
asymptotically exact moments (13) for n = 1,2,3 coincide with the leading terms of the 
expansions of our earlier results for 2koL << 1. On the other hand, these momen& differ 
only through the numerical coefficients from the moments 

(p")  N n!l" n = 0 , 1 , 2 .  . . .  (17) 

which have been obtained previously, for L << L,, from the invariant imbedding equations 
by arbitrarily assuming !3 to be uniformly distributed [3,4] (RPM). The short-scale moments 
(13) for any disorder differ qualitatively from the corresponding moments for strong disorder 
for long scales ( L  >-> Lc) whose exponential growth with L reflects the localization of 
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electrons within domains of length L,. Finally the resistance distribution (15) should be 
contrasted with the Poissonian distribution [I41 

obtained from the W M  moments (17) for the quasi-metallic regime. 
The phase distribution (16) defined in the domain 0 6 f3 < 2ir has peaks centred at 

0 = nj2 and 8 = 3nj2 respectively. It is symmetric about 8 = ii where it  goes to zero, as 
it does also at 0 = 0 and at 0 = 2a. The half-widths of the peaks are of order 1 (< 1 which 
allows us to expand I/tan2 B into small deviations from the peak positions. This yields 

whose limiting form for 1 + 0 is 

Thus the actual phase distribution reduces asymptotically to a binary distribution with 
equiprobable possible values 8 = n / 2  and 8 = 3n/2. Note that these values for the 
phase are also obtained if one linearizes (6) for z +. 0 (weak-disorder approximation) 
which leads to Q = -iz and to 

This yields 0 = x / 2  for sgnz = z/lzl = -1 and 8 = 3x12 for sgnz = 1 .  Since the 
values sgnz  = A1 occur with equal Gaussian probabilities defined by (14), we recover 
equation (20). 

It follows from the above discussion that for L << (2k0)-’ e L,  the phase distribution is 
strongly peaked around e = nj2 and 8 = 3nj2, due to the narrowness of the z distribution. 
On the other hand, in [ 121 we found that when L, >> (2ko)-’ the structure of the distribution 
of 8 evolves rapidly towards a uniform distribution as L is increased within the domain 

<< L < L,. This suggests that the length L g  - (2ko)-’ which separates the domain 
L << (2k0)-] where Pe(8; L )  is highly structured from the domain L >> (2ko)-’ wherc the 
structure of Po@; L )  is progressively washed out might be viewed as the analogue of the 
phase coherence length introduced by Stone el  a1 [I51 in the context of their study of the 
phase distribution in an Anderson tight-binding model. 

Finally, in order to illustrate the strong interdependence (correlation) of the random 
resistance and phase variables, which i s  ignored in the RPM, we give their joint distribution. 
From (8) and (9) we have 

where the averaging over the z distribution (14) may be readily performed. Using (16) we 
get 
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In conclusion, we have presented an exact invariant embedding analysis of the statistical 
properties of the resistance and of the reflection phases for arbitrary disorder at length 
scales L << (2ko)-' e L, in the quasi-metallic regime in ID. Significant quantitative 
differences between our results for the resistance moments (resistance distribution) and 
the corresponding results obtained by assuming the phases to be uniformly random have 
been noted. Our expression for the phase distribution reduces to a binary distribution with 
equiprobable values 0 = x/2 and 0 = 3x12 for weak disorder. 

From the distribution (15) it is clear that the exact conductance moments (g") = ( p - " )  of 
short (L (< (2k0)-') ID conductors are infinite. This supports a similar conclusion reached 
in previous treatments [1,3-5,81 using the RPM. In fact, the logarithmic divergence of the 
mean conductance obtained from the RPM distribution (18) is now replaced by the stronger 
inverse square divergence which follows from (15). In particular, our exact treatment 
invalidates the conclusion of Pradhan and Kumar 1131 concerning the finiteness of the mean 
conductance on short scales, based on a heuristic discussion of the embedding equations. 
These workers have also argued that the reflection phase for short conductors has two 
possible values (0 = x/2 or 3x/2), which has here been shown to follow exactly, for 
weak disorder, from a statistical treatment of the invariant embedding equation (2). The 
above treatment shows furthermore that these limiting phases are, in fact  the cause of the 
infinite values of the conductance moments since from (8) and (9) we have g = tan20. This 
observation is consistent with the stronger divergence of the conductance moments when 
the phase is treated correctly compared with the results based on the resistance distribution 
(18) obtained by arbitrarily assuming uniformly distributed phases on all length scales. 

References 

[I] Landauer R 1910 Phil. Mag. 21 963 
[Z] Bellman R and Wing G M 1976 An I,modueiion to Invrrrirrnt I&eddi,tg (New York: Wiley) 
131 R a " d  R and Doucot B 1987 J. Phvwiaue 48 509 .. _ I  

141 
151 

Kumar N 1985 Phy,y. Rev. B 31 5513 
Heinrichs J 1986 Phvs. Rev. B 33 5261: 1987 Phys. Rev. B 35 9309 . .  

161 Anderson P W, Thokess D J. Abrahams E and Fisher D S 1980 Phyr. Rev. B 22 3519 
[7] Abrikosov A A 1981 Solid State Commw. 37 991 
[SI Mel'nikov V I 1981 Fir. Tverd Tela 23 782 (Engl. Tranrl. 1981 Sov. Phys .Sd idS to te  23 444) 
[91 Aztel M Ya 1983 Pkyys. Rev. B 28 4106 

[lo] Lee P A and Stone A D  1985 Phyc Rev Lett. 55 1622 
Altshuler B L 1985 JETP Leti 41 648 

[ I  I] Lee P A, Stone A D and Fukuyama H 1987 Phys. Rev. B 35 1039 
For recent reviews of conductance fluctuations see 
Altshuler B L, Lee P A and Webb R A (ed) 1991 Mesr,xcopic Phenomena in Solid? (Amsterdam: Nonh- 

[I21 Heinrichs 1 1988 J. Phys. C; SolidSture Phys. 21 L1153 
[I31 Prodhan P and Kumar N 1993 PhyE. Rev B 48 5661 
1141 Flores J, Mello P and Monsivais I 1987 Phy.9. Rev. B 35 2144 
1151 Srooe A D. Allan D C and Jaannopoulos J D 1983 Phyr. Rev. B 27 836 

Holland) 


